
85N

Polyimide Laminate and Prepreg

85N is the ultimate polyimide and laminate and prepreg system for PWB's requiring resistance to high temperature, both in process and in end-use application. Bromine-free chemistry provides Best-in-Class thermal stability for applications with sustained high in-use temperatures as well as for use in lead-free soldering applications.

Features:

- Polyimide with the best thermal performance, including Tg greater than 250°C, decomposition temperature >400°C, and T300>60 min.
- Low z-expansion of 1.2% between 50-260°C (vs. 2.5-4.0% for typical high-performance epoxies) offering superior PTH reliability through process and in-service
- Low Z-expansion minimizes the risk of latent PTH defects caused during solder reflow and device attachment.
- Decomposition temperature of 407°C, compared with 300-360°C for typical high-performance epoxies, offering outstanding longterm high-temperature performance
- Up to 50% or more reduction in cure time compared with traditional polyimide cycles
- Electrical and mechanical properties meeting the requirements of IPC-4101/40 and /41
- Toughened, Non-MDA chemistry resists drill cracking
- Halogen-free chemistry
- Compatible with lead-free processing
- RoHS/WEEE compliant

Typical Applications:

- PCBs that are subjected to high temperatures during processing, such as lead-free soldering
- Applications with significant lifetimes at high temperatures, such as aircraft engine instrumentation, down hole drilling, under-hood automotive controls, burn-in boards, or industrial sensors

Typical Properties:

Property	Units	Value	Test Method
1. Electrical Properties			
Dielectric Constant (may vary with Resin %)			
@ 1 MHz	-	4.2	IPC TM-650 2.5.5.3
@ 1 GHz	-		IPC TM-650 2.5.5.9
Dissipation Factor			
@ 1 MHz	-	0.01	IPC TM-650 2.5.5.3
@ 1 GHz	-		IPC TM-650 2.5.5.9
Volume Resistivity			
C96/35/90	MΩ-cm	1.5 x 10 ⁸	IPC TM-650 2.5.17.1
E24/125	MΩ-cm	3.0 x 10 ⁸	IPC TM-650 2.5.17.1
Surface Resistivity			
C96/35/90	$M\Omega$	1.6 x 10 ⁹	IPC TM-650 2.5.17.1
E24/125	$M\Omega$	1.6 x 10 ⁹	IPC TM-650 2.5.17.1
Electrical Strength	Volts/mil (kV/mm)	1450 (57.1)	IPC TM-650 2.5.6.2
Dielectric Breakdown	kV		IPC TM-650 2.5.6
Arc Resistance	sec	143	IPC TM-650 2.5.1
2. Thermal Properties			
Glass Transition Temperature (Tg)			
TMA	°C	250	IPC TM-650 2.4.24
DSC	°C		IPC TM-650 2.4.25
Decomposition Temperature (Td)			
		007	IDO TIA 050 0 0 44
Initial	°C	387	IPC TM-650 2.3.41
5%	°C	407	IPC TM-650 2.3.41
T260	min	>60	IPC TM-650 2.4.24.1
T288	min	>60	IPC TM-650 2.4.24.1
T300	min	>60	IPC TM-650 2.4.24.1
CTE (x,y)	ppm/°C	16	IPC TM-650 2.4.41
CTE (z)			
< Tg	ppm/°C	55	IPC TM-650 2.4.24
> Tg	ppm/°C	149	IPC TM-650 2.4.24
z-axis Expansion (50-260°C)	%	1.2	IPC TM-650 2.4.24
3. Mechanical Properties			
Peel Strength to Copper (1 oz/35 micron)			
After Thermal Stress	lb/in (N/mm)	7.1 (1.2)	IPC TM-650 2.4.8
At Elevated Temperatures	lb/in (N/mm)	7.1 (1.2)	IPC TM-650 2.4.8.2
After Process Solutions	lb/in (N/mm)	7.1 (1.2)	IPC TM-650 2.4.8
Young's Modulus	Mpsi (GPa)	3.2	IPC TM-650 2.4.18.3
Flexural Strength	kpsi (MPa)		IPC TM-650 2.4.4
Tensile Strength	kpsi (MPa)		IPC TM-650 2.4.18.3
Compressive Modulus	kpsi (MPa)		ASTM D-695
Poisson's Ratio (x, y)	-	0.15	ASTM D-3039
4. Physical Properties			
Water Absorption	%	0.27	IPC TM-650 2.6.2.1
Specific Gravity	g/cm ³	1.6	ASTM D792 Method A
Thermal Conductivity	W/mK	0.2	ASTM E1461
Flammability	class	НВ	UL-94

Availability:

Arlon Part Number	Glass Style	Resin %	Scaled Flow Hf (mils)	Scaled Flow △H (mils)
85N0672	106	72 ± 3	$1.7 \pm~0.3$	0.75 ± 0.20
85N8063	1080	63 ± 3	$2.4 \pm\ 0.3$	0.75 ± 0.20
85N2355	2313	55 ± 3	$3.4 \pm\ 0.3$	0.75 ± 0.20
85N2650	2116	50 ± 3	4.1 ± 0.3	0.75 ± 0.20
85N2840	7628	40 ± 3	6.6 ± 0.3	0.70 ± 0.20

Recommended Process Conditions:

Process inner-layers through develop, etch, and strip using standard industry practices. Use brown oxide on inner layers. Adjust dwell time in the oxide bath to ensure uniform coating. Bake inner layers in a rack for 60 minutes at $225^{\circ}F - 250^{\circ}F$ ($107^{\circ}C - 121^{\circ}C$) immediately prior to lay-up. Store prepreg at $60-70^{\circ}F$ at or below 30% RH. Vacuum desiccate the prepreg for 8-12 hours prior to lamination.

Lamination Cycle:

- 1) Pre-vacuum for 30 45 minutes
- 2) Control the heat rise to 8°F 12°F (4°C 6°C) per minute between 150°F and 250°F (65°C and 121°C). Vacuum lamination is preferred. Start point vacuum lamination pressures are shown in the table below:

Panel	Size	Pressure		Pressure / 29" Vacuum	
in	cm	psi	kg/sq cm	psi	kg/cm²
12 x 18	40 x 46	275	19	200	14.0
16 x 18	30 x 46	350	25	250	17.5
18 x 24	46 x 61	400	28	300	21.0

- 3) Product temperature at start of cure = $425^{\circ}F$ ($218^{\circ}C$).
- 4) Cure time at temperature = 2.0 hours
- 5) Cool down under pressure at $\leq 10^{\circ}$ F/min (5°C/min)

Drill at 400-500 SFM. Undercut bits are recommended for vias 0.018" (0.045cm) and smaller

De-smear using alkaline permanganate or plasma with settings appropriate for polyimide; plasma is preferred for positive etchback

Conventional plating processes are compatible with 85N

Standard profiling parameters may be used; chip breaker style router bits are not recommended

Bake for 1 - 2 hours at 250°F (121°C) prior to solder to reflow of HASL

North America:

9433 Hyssop Drive, Rancho Cucamonga, California 91730 Tel: (909) 987-9533 • Fax: (909) 987-8541

1100 Governor Lea Road, Bear, Delaware, 19701 Tel: (302) 834-2100, (800) 635-9333 Fax: (302) 834-2574

Northern Europe:

44 Wilby Avenue, Little Lever, Bolton, Lancaster, BL31QE, UK Tel/Fax: [44] 120-457-6068

Southern Europe:

1 Bis Rue de la Remarde, 91530 Saint Cheron, France Tel: (33) 871-096-082 • Fax: (33) 164-566-489

Arlon Material Technologies

No. 20 Datong Road, Export Processing Zone, Suzhou New & High District, Jiangsu, China Tel (86) 512-6269-6966 Fax: (86) 512-6269-6038

Arlon Electronic Materials (Suzhou) Co., Ltd.

Building 7, Da Xing Industrial Park of Suzhou New & High District Jinangsu, China 21500 Tel: (86) 512-6672-1698 Fax: (86) 512-6672-1697

Eastern China:

Room 11/401, No. 8, Hong Gu Road, Shanghai, China, 200336 Tel/Fax: [86] 21-6209-0202

Southern China:

Room 601, Unit 1, Building 6, Liyuanxincun, Road Holiday, Hua qiaocheng, Nanshan District, Shenzhen City, China Tel: (86) 755-26906612 • Fax: (86) 755-26921357

Certified to ISO 9001:2008

© 2008, 2009 Arlon Incorporated