Data Sheet

Tg $150^{\circ} \mathrm{C}$
Td $330^{\circ} \mathrm{C}$

High Performance Laminate and Prepreg

IS400 is a proprietary, temperature resistant resin system with a Tg of $150^{\circ} \mathrm{C}$.

It is intended for multilayer Printed Wiring Board (PWB) applications where demanding thermal performance and high reliability are required. IS400 laminate and prepreg products are manufactured using Isola's patented technology, reinforced with electrical grade (E-glass) glass fabric. This system delivers a $330^{\circ} \mathrm{C}$ decomposition temperature and a low Z-axis expansion.

Product Attributes

High Thermal Reliability

Typical Market Applications

Automotive \& Transportation

ORDERING INFORMATION:
Contact your local sales representative or visit www.isola-group.com for further information.

Isola Group
3100 West Ray Road
Suite 301
Chandler, AZ 85226
Phone: 480-8936527
Fax: 480-893-1409
info@isola-
group.com

Isola Asia Pacific (Hong Kong) Ltd.
Unit 3512-3522, 35/F
No. 1 Hung To Road, Kwun Tong,
Kowloon, Hong Kong
Phone: 852-2418-1318
Fax: 852-2418-1533
info.hkg@isola-group.com

Isola GmbH Isola Strasse 2 D-52348 Düren, Germany Phone: 49-2421-8080 Fax: 49-2421-808164 info-dur@isolagroup.com

Product Features

Industry Recognition

- UL File Number: E41625
- RoHS Compliant

Performance Attributes

- CAF resistant

Processing Advantages

Product Availability

Standard Material Offering: Laminate

- 2 to 93 mil (0.05 to 2.4 mm)
- Available in full size sheet or panel form

Copper Foil Type

- HTE Grade 3
- RTF (Reverse Treat Foil)

Copper Weight

- $1 / 2$ to 2 oz (18 to $70 \mu \mathrm{~m}$) available
- Heavier copper available
- Thinner copper foil available

Standard Material Offering: Prepreg

- Roll or panel form
- Tooling of prepreg panels

Glass Fabric Availability

- E-glass
- Square weave glass

IS400 Typical Values

Property		Typical Value	Units	Test Method	
		Metric (English)	IPC-TM-650 (or as noted)		
Glass Transition Temperature (Tg) by DSC			150	${ }^{\circ} \mathrm{C}$	2.4.25C
Decomposition Temperature (Td) by TGA @ 5\% weight loss		330	${ }^{\circ} \mathrm{C}$	2.4.24.6	
Time to Delaminate by TMA (Copper removed)	A. T260 B. T288	$\begin{aligned} & >60 \\ & >10 \end{aligned}$	Minutes	2.4.24.1	
Z-Axis CTE	A. Pre-Tg B. Post-Tg C. 50 to $260^{\circ} \mathrm{C}$, (Total Expansion)	$\begin{gathered} 50 \\ 250 \\ 3.3 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \% \end{gathered}$	$\begin{aligned} & \text { 2.4.24C } \\ & 2.4 .24 \mathrm{C} \end{aligned}$	
X/Y-Axis CTE	Pre-Tg	13	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	2.4.24C	
Thermal Conductivity		0.36	W/mK	ASTM E1952	
Thermal Stress 10 sec @ 288으 (550.4야)	A. Unetched B. Etched	Pass	Pass Visual	2.4.13.1	
Dk, Permittivity	A. @ 100 MHz B. @ 500 MHz	$\begin{aligned} & 4.00 \\ & 3.90 \end{aligned}$	-	$\begin{aligned} & 2.5 .5 .3 \\ & 2.5 .5 .9 \end{aligned}$	
Df, Loss Tangent	A. @ 100 MHz B. @ 500 MHz	$\begin{aligned} & 0.020 \\ & 0.022 \end{aligned}$	-	$\begin{aligned} & 2.5 .5 .3 \\ & 2.5 .5 .9 \end{aligned}$	
Volume Resistivity	A. C-96/35/90 B. At elevated temperature	$\begin{aligned} & 4.0 \times 10^{8} \\ & 7.0 \times 10^{7} \end{aligned}$	M Ω-cm	2.5.17.1	
Surface Resistivity	A. C-96/35/90 B. At elevated temperature	$\begin{aligned} & 3.0 \times 10^{6} \\ & 5.4 \times 10^{6} \end{aligned}$	$\mathrm{M} \Omega$	2.5.17.1	
Dielectric Breakdown		>50	kV	2.5.6B	
Arc Resistance		120	Seconds	2.5.1B	
Electric Strength (Laminate \& laminated prepreg)		48 (1100)	kV/mm (V/mil)	2.5.6.2A	
Comparative Tracking Index (CTI)		3 (175-249)	Class (Volts)	UL 746A ASTM D3638	
Peel Strength	A. Low profile copper foil and very low profile copper foil all copper foil $>17 \mu \mathrm{~m}$ [0.669 mil] B. Standard profile copper 1. After thermal stress 2. At $125{ }^{\circ} \mathrm{C}$ ($257{ }^{\circ} \mathrm{F}$) 3. After process solutions	$\begin{aligned} & 1.05(6.0) \\ & 1.45(9.0) \\ & 1.25(8.0) \\ & 1.45(9.0) \end{aligned}$	N/mm (lb/inch)	$\begin{gathered} 2.4 .8 \mathrm{C} \\ 2.4 .8 .2 \mathrm{~A} \\ 2.4 .8 .3 \\ 2.4 .8 .2 \mathrm{~A} \end{gathered}$	
Flexural Strength	A. Length direction B. Cross direction	$\begin{aligned} & 82.0 \\ & 66.6 \end{aligned}$	ksi	2.4.4B	
Tensile Strength	A. Length direction B. Cross direction	$\begin{aligned} & 51.2 \\ & 41.7 \end{aligned}$	ksi	ASTM D3039	
Young's Modulus	A. Length direction B. Cross direction	$\begin{aligned} & 3663 \\ & 3328 \end{aligned}$	ksi	ASTM D790-15e2	
Poisson's Ratio	A. Length direction B. Cross direction	$\begin{aligned} & 0.183 \\ & 0.151 \end{aligned}$	-	ASTM D3039	
Moisture Absorption		0.18	\%	2.6.2.1A	
Flammability (Laminate \& laminated prepreg)		V-0	Rating	UL 94	
Relative Thermal Index (RTI)		130	${ }^{\circ} \mathrm{C}$	UL 796	

The data, while believed to be accurate and based on analytical methods considered to be reliable, is for information purposes only. Any sales of these products will be governed by the terms and conditions of the agreement under which they are sold.

